首页> 外文OA文献 >Neural network designed pulse sequences for robust control of single-triplet qubits
【2h】

Neural network designed pulse sequences for robust control of single-triplet qubits

机译:神经网络设计的脉冲序列鲁棒控制   单三元组量子比特

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the near future, more and more laborious tasks will be replaced bymachines. In the context of quantum control, the question is, can machinesreplace human beings to design reliable quantum control methods? Here weinvestigate the performance of machine learning in composing composite pulsesequences which are indispensable for a universal control of singlet-tripletspin qubits. Subject to the control constraints, one can in principle constructa sequence of composite pulses to achieve an arbitrary rotation of asinglet-triplet spin qubits. In absence of noise, they are required to performarbitrary single-qubit operations due to the special control constraint of asinglet-triplet qubit; Furthermore, even in a noisy environment, it is possibleto develop sophisticated pulse sequences to dynamically compensate the errors.However, tailoring these sequences is in general a resource-consuming process,where a numerical search for the solution of certain non-linear equations isrequired. Here we demonstrate that these composite-pulse sequences can beefficiently generated by a well-trained, double-layer neural network. Forsequences designed for the noise-free case, the trained neural network iscapable of producing almost exactly the same pulses developed in theliterature. For more complicated noise-correcting sequences, the neural networkproduced pulses with a slightly different line-shape, but the robustnessagainst noises remains about the same. These results indicate that the neuralnetwork can be a judicious and powerful alternative to existing techniques, indeveloping pulse sequences for universal fault-tolerant quantum computation.
机译:在不久的将来,越来越繁琐的工作将被机器取代。在量子控制的背景下,问题是,机器可以代替人类来设计可靠的量子控制方法吗?在这里,我们研究了组合复合脉冲序列中机器学习的性能,这些复合脉冲序列对于单线态-三重态pin量子位的通用控制是必不可少的。在控制约束条件下,原则上可以构造一系列复合脉冲,以实现任意旋转的asinglet-triplet自旋量子位。在无噪声的情况下,由于asinglet-triplet qubit的特殊控制约束,它们需要执行任意的单qubit操作;此外,即使在嘈杂的环境中,也有可能开发出复杂的脉冲序列来动态补偿误差。但是,定制这些序列通常是一种资源消耗过程,其中需要对某些非线性方程的解进行数值搜索。在这里,我们证明了这些复合脉冲序列可以通过训练有素的双层神经网络有效地生成。对于无噪声情况设计的序列,训练有素的神经网络能够产生几乎完全相同的,在文学中产生的脉冲。对于更复杂的噪声校正序列,神经网络产生的脉冲的线形略有不同,但是抗噪声的鲁棒性保持不变。这些结果表明,神经网络可能是现有技术的明智而强大的替代方案,它正在开发用于通用容错量子计算的脉冲序列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号